domingo, 6 de junio de 2010

unidad 7


EL CONCEPTO DE MOL Y SUS APLICACIONES
Hemos estudiado a la materia en su dimensión submicroscópica, es decir la realidad de átomos y moléculas. Hemos profundizado el estudio de tal forma que incluso hemos comprendido el comportamiento de las propiedades fisico químicas de sustancias puras, éstas, perfectamente perceptibles y medibles en una dimensión macroscópica ( de laboratorio o industria ).
A esta altura de nuestro estudio reconocemos, que en la dimensión macroscópica, no hemos desarrollado las herramientas para trabajar con las sustancias desde el punto de vista cuantitativo, esto es, trabajar con cantidades (masas) definidas de las sustancias que participan en los fenómenos químicos.
No obstante lo expresado, cuando hablamos al comienzo del curso del Peso Relativo de los Atomos o bien del cálculo del Peso Atómico a partir de mezclas de isótopos algo muy importante avanzábamos en el sentido del trabajo cuantitativo. En efecto, cuando determinábamos aquellas magnitudes siempre estaba presente el hecho que comparábamos una misma cantidad de atomos de cada elemento.
En el Peso Atómico de un elemento expresado en gramos existen 6,023 .10 23 átomos del Elemento.
Si pesaramos en la balanza de una confitería 51 de gramos de virutas de vanadio metálico estaríamos pesando aproximádamente 6,023 10 23 átomos de vanadio puesto que el Peso Atómico de ese metal se ha determinado como igual a 50,94.
El valor 6,023 1023 fué determinado por Avogadro mediante cálculos estadísticos acerca de sistemas gaseosos y de ahí que se reconoce como el Número de Avogadro ( N ).
N = 6,023 .10 23
Este valor pasa a ser de importancia central en la química cuantitativa y es la base de la definición del concepto de mol
DEFINICIÓN DE MOL
Un Mol es 6,023 10 23 unidades.
Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química, como recién lo dijimos, podemos medir cómodamente un mol de átomos de Vanadio o un mol de átomos de cualquier otro elemento en la balanza de una confitería.
Pero el Número de Avogadro de átomos es una cantidad tan grande de átomos o bién los átomos son tan pequeños y livianos que son magnitudes que desafían nuestra imaginación. Según nos hizo notar recientemente un colega, si tuvieramos una hilera de 1 mol de hormigas de 1mm cada una separadas cada una de la precedente por una distancia también de 1mm, la longitud de la hilera cubriría 1,2046 10 18 Km. Tal hilera cubriría mil doscientos setenta y ocho millones de veces la trayectoria circular de la Tierra alrededor del Sol.
NUEVA DEFINICIÓN DE PESO ATOMICO
El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento
expresada gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de átomos
EL MOL DE MOLECULAS
Volvamos a nuestra experiencia de recolección de Helio puesto que podemos sacar mucho más provecho de ella y coloquemos a nuestro sistema en situación comparativa con otros.
DEFINICIÓN DE PESO MOLECULAR
El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas
CALCULO DEL PESO MOLECULAR
Generalizando, si una Sustancia tiene por Fórmula AaBbCc........
A nivel submicroscópico su molécula está formada por a átomos de A, b átomos de B y c átomos de C etc...
y a nivel macroscópico el mol de moléculas está formada por a moles de átomos de A, b moles de átomos de B y c moles de átomos átomos de C etc... y de allí que el Peso Molecular se calcule con la siguiente fórmula.
Mr AaBbCc........ = a * Ar A + b * Ar B + c * Ar C +........
¿Cuánto vale el Peso molecular del Cloroformo CHCl3?
Mr CHCl3 = 1 *12 + 1 * 1 + 3 * 35,5 = 119,5 g/mol
También podemos generalizar importantes conceptos acerca de un doble significado, a nivel submicroscópico y a nivel macroscópico, de la notación química de Símbolos, Fórmulas y Ecuaciones.
Presentaremos este doble significado valiéndonos de representaciones gráficas para las entidades submicroscópicas y las representaciones gráficas ampliadas para los conceptos (de moles) usados a nivel macroscópico.
LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.

Para dar adecuada respuesta a la pregunta planteada es necesario averiguar las relaciones matemáticas que expresan el comportamiento de las distintas variables que determinan el estado de un sistema gaseoso. Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:
n = Número de moles, V = Volumen, P = Presión y t = temperatura.
Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar
MÉTODO DE DETERMINACIÓN DEL PESO MOLECULAR
La determinación experimental del valor de Mr es de fundamental importancia cuando no se conoce la fórmula de alguna sustancia. Si la sustancia se puede evaporar podemos aplicar la ecuación anterior pero para calcular el Peso Molecular.
DETERMINACIÓN DE FÓRMULAS EMPÍRICAS Y MOLECULARES
Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.
Fórmula Molecular
La Fórmula Molecular indica la cantidad exacta de átomos de cada elemento en la molécula. Esa cantidad exacta de átomos debe mantener la proporción observada en la fórmula empírica, por lo tanto, la fórmula Molecular debe ser (CH2 )m donde m es un número entero por determinar.
CALCULOS ESTEQUIOMETRICOS
Se refieren a la determinación de las cantidades de Sustancias ( A,B,C y D ) involucradas en una determinada reacción química.
Sea a A + b B = c C + d D la ecuación de la reacción general, donde a,b,c y d son los respectivos Coeficientes Estequiométricos.
Sean niA , niB ,niC , niD la cantidad de moles de los reactivos y productos en el instante inicial de la reacción (tiempo = 0)
Sean ntA , ntB ,ntC , ntD la cantidad de moles de los reactivos y productos en el instante t desde el momento inicial de la reacción ( tiempo = t )
Transcurrido el tiempo t, cada una de las sustancias ha variado como consecuencia de la reacción, ya sea desapareciendo (Reactivos) o bién apareciendo (Productos) en las siguientes cantidades.
La Condición de Estequiometría establece:
Es la forma matemática de indicar que cada sustancia reacciona en cantidad de moles que es proporcional al respectivo coeficiente estequiométrico. Las expresión relaciona las cantidades de moles que reaccionan, de todas las sustancias, en todo instante.

unidad 6


PROPIEDADES FISICOQUIMICAS DE LAS SUSTANCIAS PURAS

Los tipos de enlaces, la direccionalidad de éstos, los rasgos eléctricos y otras características moleculares determinan las propiedades fisicoquímicas de las sustancias.
Parece conveniente referirse en éste momento a la fortaleza comparada de los distintos tipos de enlaces interatómicos. La fortaleza del enlace está dada por la energía necesaria para romper el enlace y ésta a su vez es directamente proporcional a la energía de estabilización o energía liberada cuando el enlace se forma.
El enlace covalente es el más fuerte, lo sigue el iónico y finalmente el metálico que es el más débil.
MOLECULAS GIGANTES
Son arreglos de átomos, unidos mediante fuerzas de enlace químico (interatómico), en que no está definido el tamaño del sistema. Por lo general son arreglos de gran tamaño y de allí el nombre de la categoría. La proporción de distintos átomos se conoce y se representan estos sistemas por su fórmula empírica. La fórmula verdadera es (F.E.) n , pero n es indeterminada.
Hay tres grandes tipos de moléculas gigantes, las de enlace iónico, las de enlace covalente y las de enlace metálico.
COVALENTES TRIDIMENSIONALES
Son arreglos tridimensionales de átomos iguales o diferentes unidos por enlaces covalentes y dispuestos en el espacio siguiendo las reglas de la hibridación. Son las estructuras más rígidas, duras o resistentes que se conocen.
Sus temperaturas de fusión son muy altas ( miles de°C) y en muchos casos se descomponen químicamente por el calor antes de entrar en fusión. Por otra parte la separación de las partículas por acción de moléculas de un solvente es imposible, por lo tanto son completamente insolubles.
COVALENTES BIDIMENSIONALES
Es cuando la red de enlaces covalentes se teje en dos dimensiones. Los mismos conceptos de infusibilidad e insolubilidad que para las mallas trididimensionales pero no así en lo que se refiere a la dureza pues las fuerzas de atracción entre las mallas bidimensionales es débil. Por esa razón estas sustancias son blandas en el sentido del desprendimiento de las mallas.
El ejemplo típico es el Carbono en su forma de grafito en que los C están hibridizados sp2 . Es interesante consignar que en cada orbital pz existen un electrón. Estos electrones se pueden desplazar sobre la malla y en consecuencia el grafito es conductor de la corriente eléctrica.
COVALENTES UNIDIMENSIONALES
Corresponde a las sustancias denominadas polímeros, largas cadenas de unidades conectadas por enlaces covalentes.
Los homopolímeros que repiten unidades iguales (-A-A-A-A-A-A- ; -(A)- n ).
Los copolímeros que repiten unidades distintas ( A-B-A-B-A-B- ; ( -A-B-) n ).
Son cadenas largas llamadas también macromoléculas y por ésta razón es que interaccionan unas con otras de manera significativa. Las interacciones entre macromoléculas son fuerzas de distintos tipos y que veremos más adelante en el caso de moléculas pequeñas.
En los polímeros, en primer término, la fusión y la solubilización están determinadas por la magnitud de las fuerzas de atracción entre las macromoléculas, en principio altas, precisamente por la longitud de las cadenas. Sin embargo, existe un segundo factor determinante, el factor entrópico o desorden que pueden alcanzar las estructuras una vez solubilizadas o fundidas.
Los polímeros flexibles o plegables forman estructuras sólidas bifásicas (cristalinas – amorfas) que son quebradizas, éstas estructuras se pueden disolver o fundir con relativa facilidad pues cuando alcanzan tales estados la macromoléculas están muy enroscadas, plegadas u ovilladas, en suma desordenadas lo que favorece el proceso de separación de las macromoléculas.
En cambio, las macromoléculas rígidas no tienen favorable el factor entrópico y así son dificiles de fundir y solubilizar. Estos polímeros rígidos, en el sólido son monofásicos y de mucha resistencia ( Kevlar).
IONICAS.
En estas moléculas gigantes los átomos están unidos por enlaces iónicos. Es decir son un arreglo de iones positivos y negativos que se disponen alternadamente en el espacio compensando sus cargas . La geometría del arreglo es simple cuando los iones positivos y negativos son monoatómicos y además se encuentran en relación 1:1 como en el caso del Na+Cl -. Cuando los iones son complejos, con grandes diferencias de tamaños o la proporción entre ellos no es simple, los arreglos son complicados y son materia de estudio de la Cristalografía que hace uso de las técnicas de difracción de rayos X para resolver estas situaciones.
METALICAS
Corresponde al caso de los metales. Los átomos metálicos , al ser muy electropositivos se desprenden de sus electrones de valencia pasando a formar iones positivos. Por su parte los electrones que han perdido su pertenencia a un átomo determinado se mueven entre los iones constituyendo una nube de electrones delocalizados. Esta nube de electrones que une a iones positivos es el enlace metálico.
MOLECULAS CONVENCIONALES
O SUSTANCIAS MOLECULARES
Son aquellos sistemas formados por moléculas que se encuentran claramente definidas, se conoce el número exacto de átomos y de qué elementos está constituída la molécula. Se representan por las llamadas fórmulas moleculares reales.
En su gran mayoría las moléculas de ésta categoría unen sus átomos con enlaces covalentes y al expresar esto pensamos en muchas moléculas simples formadas entre no metales y en la inmensa cantidad de compuestos orgánicos constituídos principalmente por los elementos C, H, O, N, P, S.

unidad 5


EL ENLACE QUIMICO
El enlace químico es la fuerza que une a los atomos para formar las moléculas.
Como ya se ha dicho es un proceso de estabilización por interacciones electrónicas donde cada átomo trata de alcanzar la configuración electrónica del gas noble más cercano. Por lo general los gases nobles tienen 8 electrones de valencia, de allí se acostumbra a decir que el enlace químico se forma cumpliendo la "regla del octeto".
La energía de estabilización se denomina también la energía de enlace y corresponde además de la energía liberada cuando se forma el enlace a la energía necesaria para romper el enlace.
Aquí es conveniente repasar el concepto de electrones de valencia y su representación mediante la notación de Lewis.
Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.
TIPOS DE ENLACES Y POLARIDAD DE LOS ENLACES
Existen dos mecanismos para cumplir la regla del octeto.
a. ENLACE IONICO. Cesión de electrones, de parte de un átomo fuertemente electropositivo a otro fuertemente electronegativo. Formación de iones positivos y negativos y atracción electrostática entre ellos.
b. ENLACE COVALENTE. Compartición de parejas de electrones entre átomos de parecida o igual electronegatividad. Electrones compartidos con spines opuestos y atracción magnética.
Ejemplos de estas situaciones, donde se muestra la estructura electrónica a nivel molecular, se dan a continuación mediante las correspondientes notaciones de Lewis.
ENLACE COVALENTE DATIVO Y CARGAS FORMALES
Se presenta con relativa frecuencia la situación que para formar un enlace covalente o de compartición, es uno de los átomos participantes del enlace el que aporta la pareja de electrones del enlace. El enlace que se forma se llama covalente dativo y va acompañado de desbalances de cargas eléctricas que deben ser determinados para tener una clara visión de la situación molecular.
Los desbalances de cargas eléctricas se detectan mediante el cálculo de las cargas formales haciendo uso de la siguiente relación:
CF = N° de electrones de valencia - ( N° electrones no enlazantes + 1/2 N° electrones enlazantes )
EL ENLACE QUÍMICO Y LA MECANICA CUANTICA
La Mecánica Cuántica contempla la combinación matemática de las funciones de ondas de orbitales atómicos para dar orbitales moleculares ( pertenecen a la molécula). La combinación produce dos orbitales moleculares.
ENERGÍA DE LOS ORBITALES MOLECULARES ENLAZANTES Y ANTIENLAZANTES EN FUNCIÓN DE LA DISTANCIA INTERATÓMICA
La suma de funciones atómicas da un orbital molecular enlazante donde se sitúa la pareja de electrones con spines opuestos . Este se puede visualizar como la superposición de los orbitales atómicos. En el grafico siguiente se muestra la energía de éste orbital molecular en función de la distancia internuclear. Existe una estabilización a medida que los átomos se acercan pues predominan las fuerzas de atracción entre los atomos sin embargo si los átomos se acercan demasiado hay una desestabilización producto de fuerzas de repulsión interatómica. La menor energía corresponde a un pozo de energía en que se encuentran los átomos en equilibrio respecto de las atracción y la repulsión interatómicas. Este pozo de energía determina la distancia internuclear llamada también longitud de enlace.
La diferencia de funciones atómicas genera un orbital molecular antienlazante marcado por fuerzas de repulsión en donde la la mayor estabilidad se alcanza cuando los átomós están separados a gran distancia. En este orbital los electrones se encuentran con spines paralelos. Corrresponde al proceso de ruptura d el enlace.
LA HIBRIDACIÓN DE ORBITALES

La disposición de los átomos en el espacio se determina experimentalmente mediante la técnica de difracción de rayos X. Para hacer concordar la información experimental con aspectos teóricos se ha visto la necesidad de formular un modelo de reordenamiento posicional de los orbitales atómicos. Esta formulación de orden matemático se conoce como hibridación de los orbitales atómicos (mezcla matemática de funciones de onda).
Existen diferentes formas de hibridación y la forma que en definitiva adopte un átomo decidirá la orientación espacial de sus orbitales y por consecuencia la GEOMETRIA MOLECULAR .
LA LONGITUD Y LA ESTABILIDAD DE LOS ENLACES DE ATOMOS HIBRIDIZADOS.
Puesto que los orbitales s son pequeños y de baja energía comparados con los orbitales p que son de mayor alcance y mayor energía, los enlaces de átomos hibridizados mantendrán aquellas características según el grado de carácter s o p tenga cada situación.

unidad 4


PROPIEDADES PERIODICAS DE LOS ELEMENTOS
La repetición de las configuraciones electrónicas y la consiguiente conformación de un sistema de períodos y grupos es el fenómeno de carácter periódico más relevante. Sin embargo, hay otras propiedades atómicas importantes afectadas de carácter periódico.
El RADIO ATOMICO (R.A.)
Es la distancia entre el núcleo del átomo y el electrón periférico.
El siguiente gráfico muestra elocuentemente la variación periódica del Radio Atómico al avanzar el Número Atómico en los elementos. Se observa que los picks de mayor Radio Atómico corresponde a los metales alcalinos.
El RadioAtómico disminuye "suavemente" al Aumentar Z en un Período El Radio Atómico aumenta "bruscamente" al aumentar Z en un Grupo o familia. Los iones son atomos cargados eléctricamente que resultan de ganar o perder electrones.El Radio de lo iones es diferente al de los atomos neutros. Los iones negativos ( ganan electrones) son de mayor Radio, en cambio los positivos, ( pierden electrones) son menor Radio.Las estructuras isoelectrónicas, son iones positivos o negativos o bien átomos neutros que poseen igual configuración electrónica ( igual número de electrones ). Puede pensarse, que por ésta razón, el Radio de las estructuras isoelectrónicas debe ser el mismo. No es así, pues, al igual que acontece con la disminución de los radios en un Período, la carga positiva en el nucleo es diferente. A mayor Z menor Radio.

EL POTENCIAL DE IONIZACIÓN ( P . I .)

Es la Energía que se necesita para arrancar el electrón periférico a un átomo neutro libre.

POTENCIAL DE IONIZACIÓN

Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Energía de Ionización se comporta en forma inversa a la del Radio Atómico.


LA ELECTROAFINIDAD ( E . A .)


Es la Energía que se libera cuando un átomo libre y neutro capta un electrón .

ELECTROAFINIDAD

Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Electroafinidad se comporta en forma inversa a la del Radio Atómico .
No cuenta para los gases nobles


LA ELECTRONEGATIVIDAD ( E. N.)

La Electronegatividad es una magnitud que engloba tanto al P.I como a la E.A. y, en consecuencia, es proporcional a ambas. De la misma forma que las magnitudes anteriores se comporta en forma inversa al Radio Atómico
Mide la tendencia a formar iones negativos o bien la capacidad de atraer electrones.
La electronegatividad máxima es la del Fluor e igual a 4. No cuenta para los gases nobles.

LA ELECTROPOSITIVIDAD ( E . P .)

La Electropositividad es una magnitud de sentido inverso de la E. N.
Mide la tendencia a formar iones positivos o bien la capacidad de perder, ceder o repeler electrones.
Tampoco cuenta para los gases nobles
LA FORMACIÓN DE LOS IONES

Las propiedades periódicas recién estudiadas y sus variaciones en el ordenamiento del Sistema Periódico apuntan a un hecho de singular importancia para el comportamiento químico de los distintos elementos. Esta es la situación de estabilidad, sinónimo de baja energía, de los sistemas electrónicos de los gases nobles. Estos sistemas tienen sus orbitales comprometidos, completos de electrones. La circunstancia que las moléculas de gases nobles son monoatómicas son la prueba de tal estabilidad, es decir, los átomos de los gases nobles no realizan intercambios electrónicos ni para formar iones ni para unirse con otros átomos pues sus configuraciones electrónicas son estables.
LA FORMACION DE LAS MOLECULAS
La formación de los iones o bién alcanzar ciertos estados de oxidación hay que observarlo como un proceso asociado entre distintos átomos y que conduce a la formación de las moléculas de las diferentes Sustancias Puras. Las fórmulas (atomicidades) de aquellas moléculas puede deducirse teniendo en cuenta el estado de oxidación de los iones estabilizados y fundamentalmente la necesidad que la estructura molecular resultante sea eléctricamente neutra. La atomicidad de un elemento se obtiene tomando en primer término el valor absoluto del estado de oxidación del átomo del otro elemento y viciversa, luego aquellas atomicidades se simplifican, de ser posible, llegándose a las definitivas.
LOS ACIDOS Y LAS BASES
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:
ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno Observar como la denominación del ácido se transforma para el aniónObservar como la denominación del ácido se transforma para el aniónBASES son sustancias de fórmula general BOH que se disocian en agua liberando el ión hidroxilo.Anión es un ión de carga negativa y Catión es un ión de carga positiva. Los nombres provienen de la Electroquímica